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SUMMARY
Wepresent scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated
cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold
alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in
interacting cells into a unified latent space. Neural networks are employed to minimize the distance between
corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to
real datasets for testing and demonstrate that our method detects interactions with high consistency
comparedwith othermethods.More importantly, scTenifoldXct uncoversweakbut biologically relevant inter-
actions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare
different samples, such as healthy vs. diseased andwild type vs. knockout, to identify differential interactions,
thereby revealing functional implications associated with changes in cellular communication status.
INTRODUCTION

Single-cell technology has revolutionized biomedical research.

For example, single-cell RNA sequencing (scRNA-seq) allows

the transcriptomic information from tens of thousands of cells

to be gathered in parallel in a robust and reproducible way.3–5

The unprecedented resolution in scRNA-seq data has been ex-

ploited to reveal cellular diversity, such as various cell types

and cellular states in tissue samples.6 With scRNA-seq data, it

is possible to study the cellular communication network through

the mapping of cell-specific ligand-receptor (LR) connectivity in

complex tissues.1,7 The evolving scRNA-seq data space has

sparked the development of numerous computational tools for

mining cell-to-cell communication information.8–19 Neverthe-

less, robust statistical confidence in detecting results has proved

difficult to achieve.20,21

This paper presents scTenifoldXct—a computational tool that

incorporates intra- and intercellular gene networks to detect cell-

cell interaction using scRNA-seq data. scTenifoldXct is semi-su-

pervised and thus can be used with or without reference LR

pairs. A redesigned crosstalk scoring metric is also introduced

to estimate the interaction strength of each LR pair. The cross-
talk scoring metric extends the commonly used metric, i.e., the

product of ligand and receptor gene expressions, which is adop-

ted by almost all existing methods. The built-in functionality

involving single-cell gene network construction allows scTeni-

foldXct to couple cell-cell interactions with intracellular activities.

scTenifoldXct is also able to perform differential interaction anal-

ysis in which cell-cell interaction patterns are compared between

tissue samples. When performing comparative analysis, scTeni-

foldXct combines and analyzes data from two samples in an inte-

grative manner rather than processing the two samples sepa-

rately, making the analysis more powerful in detecting subtle

differential interactions. To demonstrate these features of

scTenifoldXct, we applied scTenifoldXct to scRNA-seq datasets

under the single-sample and two-sample application settings.

RESULTS

The scTenifoldXct framework for single-sample
application
The simple application for scTenifoldXct is single-sample based,

i.e., an application using scRNA-seq data from one sample that

contains different cell types. The goal is to detect LR pairs with
Cell Systems 14, 1–10, April 19, 2023 ª 2023 Elsevier Inc. 1
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Figure 1. Overview of the scTenifoldXct workflow

scTenifoldXct is designed to identify LR-mediated interactions using scRNA-seq data. The scTenifoldXct workflow involves three successive steps, namely (1)

gene similarity matrix construction, (2) manifold alignment, and (3) significant LR pairs detection. PC regression is used in the construction of single-cell gene

regression networks (scGRNs),WA andWB, to approximate gene regulatory networks for cell types A and B, respectively. The joint similarity matrix is composed

ofWA,WB, andS, the crosstalk scorematrix. Neural networks are used to learn latent representations of each gene pair. Two genes of an LR pair aremore likely to

interact when their low-dimensional latent representations are more similar.
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gene products that interact between two given cell types. In such

a single-sample application setting, scTenifoldXct requires two

inputs: a gene-by-cell count matrix, X ˛Rn3m and a cell type la-

bel vector, c˛Rm31, where n is the number of genes andm is the

number of cells. Given any cell type A, let XA be the count matrix

where cells belong to type A. The analytical objectives include

the following: (1) to examine LR pairs in cell-cell interaction data-

bases and identify those pairs that show significant activities and

contribute to the LR-mediated interactions in the given sample,

and (2) to discover LR pairs that are absent in the database.

The framework of scTenifoldXct involves three successive steps

(Figure 1), as briefly described below. More technical details are

given in STAR Methods.

Step 1: Construction of single-cell gene networks and

crosstalk score matrix

We started by creating two gene networks for the two cell types

of interest, respectively (substep 1.1). Subsequently, we

computed a gene-gene crosstalk score matrix (substep 1.2).

Finally, we concatenated the two gene networks and the gene-

gene crosstalk score matrix to create a joint similarity matrix

(substep 1.3), subject to manifold alignment in step 2.

Substep 1.1: Constructing gene network for each of the

cell types. We used principal component (PC) regression to
2 Cell Systems 14, 1–10, April 19, 2023
construct single-cell gene networks as previously described.22

Briefly, for each gene, the expression of the gene was used as

a response variable, and the expressions of all other genes

were used as dependent variables. The constructed gene net-

works for cell types A and B were then saved as graphs with

signed, weighted, and directional edge weights represented as

adjacency matrices WA and WB. Each column of an adjacency

matrix stores the PC regression coefficients of a gene, indicating

the regulatory relationships between this gene and all other

genes. WA and WB were normalized separately by dividing the

maximum absolute value of all entries of the matrix. Note that

PC regression infers gene-gene expression relationships to

approximate gene regulatory networks without requiring any in-

formation on transcription factors (TFs) and their targets or

knowledge of regulatory elements such as enhancers and pro-

moters. To avoid confusion, the networks,WA andWB, are here-

after referred to as gene regression networks. Users can supply

their own WA and WB at this step to replace these two gene

regression networks.

Substep 1.2: Calculating crosstalk score between gene pairs

from different cell types. We computed the crosstalk score,

scoreðiA; jBÞ, between gene i in cell type A and gene j in cell

type B. The score was designed to incorporate information
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from the mean and variance of expression of the two genes. The

score is greater when two genes have a higher andmore variable

expression (see STAR Methods). The crosstalk scores between

pairs of all genes form the matrix S.

Substep 1.3: Constructing gene similarity matrix. The joint sim-

ilarity matrix W was composed of four blocks. The gene regres-

sion networks, WAand WB, were set as the diagonal blocker

matrices and the crosstalk score matrix S as the off-diagonal

blocker matrix to yield the similarity matrix W between genes

from two cell types, A and B.

Step 2: Manifold alignment

Themanifold alignment methodwas applied to the joint similarity

matrixW to recover latent representations of gene expression of

two cell types. We used neural networks to learn the unified low-

dimensional latent representation.23 The manifold alignment

problem solved by neural networks has been shown to be

computationally efficient while preserving nonlinearity proper-

ties,24 and numerically more stable than methods based on

eigen decomposition.25,26

Step 3: Determination of significant LR pairs

Euclidean distance between projected genes on the aligned

manifold subspace was used to determine significant LR pairs.

The distances were computed between all gene pairs from cell

type A to B. Based on the distance values, gene pairs were

ranked. The closer two genes are, the more likely they are to

interact. To select significant LR pairs, p values were calculated

using a nonparametric test. A list of significant LR pairs was

selected using a 0.05 p value cutoff.

Single-sample scTenifoldXct analysiswith inflammatory
skin data
We validated scTenifoldXct outcomes using publicly available

scRNA-seq datasets. The first dataset was generated with le-

sional and non-lesional skin samples in a study of atopic derma-

titis.27 This inflammatory skin dataset contains ten different

subpopulations of cells, including three subpopulations of fibro-

blasts and two subpopulations of dendritic cells. Experimental

evidence shows that lesional skin has enhanced CCL19-CCR7

interaction between inflammatory fibroblasts and dendritic cells.

CCL19 is required for lymphocyte recirculation, homing, and

migration to secondary lymphoid organs.28 Lesional skin in

atopic dermatitis shows enhanced chemokine signals with

higher expression of CCL19 in inflammatory fibroblasts.29

We first focused on interactions between fibroblasts and den-

dritic cells and identified 30 significant LR pairs (Table S1),

including CCL19-CCR7. These significant interactions shed light

on the function of inflammatory fibroblasts interacting with

lymphoid cells and regulating type 2 inflammation, an inflamma-

tory pathway involving a subpopulation of CD4+ T cells known as

Th2 cells, which is consistent with the findings of the original

study.27 Gene ontology (GO) enrichment analysis further sug-

gested that significant LR genes were enriched in dendritic cell

chemotaxis and dendritic cell migration pathways. This result is

in line with another previous study,30 showing that the cutaneous

immune response depends on dendritic cell migration from the

skin to draining lymph nodes. VCAM1-ITGB2 and CCL2-

CXCR4were identified by scTenifoldXct as the top-ranked pairs.

These genes do not have a higher expression (measured by

either the average expression of a single gene among cells or
the product of the average expressions of two genes) than

many other LR pairs. But, both VCAM1-ITGB2 and CCL2-

CXCR4 are biologically relevant, i.e., VCAM1-associated type

2 inflammation causes the over-expression of cytokines (CCL2

and CCL19) in fibroblasts,27 and CCL2 is known to be induced

by inflammatory stimuli such as tumor necrosis factor a

(TNF-a).31 scTenifoldXct also identified CCL2-TNF. Again,

neither of the genes was highly expressed. These examples

demonstrate the capability of scTenifoldXct in detecting lowly

expressed LR pairs by considering intracellular regulatory

activities.

We then focused on interactions between dendritic cells and

T cells and identified 33 significant LR pairs (Table S2). These in-

teractions centered around two ligand genes: CCL17 and

CCL22, both closely associated with the pathophysiology of

atopic dermatitis.32 Serum levels of CCL17 and CCL22 are

known to be correlated with the disease severity.33 In the context

of inflamed skin, dendritic cell-derived CCL17 and CCL22

primarily attract T cells that express the cutaneous homing

receptor—they bind to C-C motif chemokine receptors (CCRs),

which are preferentially expressed in T cells, resulting in inflam-

mation.34 Genes of significant LR pairs also included CCR6,

CXCR4, CCL17, S100A8, and S100B. The abundant expression

of CCR6 in T cells in skin lesions suggests its important role in

early inflammatory T cell recruitment. CXCR4 is a critical recep-

tor involved in both homeostatic and pathological leukocyte traf-

ficking, attracting cells to inflammatory sites and contributing to

the activation of integrins required for T cell activation.35 CCL17

binds to the receptor CCR4, which is known to be expressed on

activated/memory T cells. Recent data show the enhanced

expression of CCL17 in the skin lesions and serum of AD pa-

tients, leading to dendritic cell migration from the skin to the

skin-draining lymph nodes.36 S100 proteins such as S100A8

and S100B are required for immunological homeostasis and

inflammation and have been linked to various inflammatory

skin diseases, including psoriasis and atopic dermatitis.37,38

S100A8 and S100B were other examples lowly expressed but

were detected and ranked as the top LR pairs by scTenifoldXct.

Finally, we conflated the interactions across three cell types,

i.e., fibroblast-dendritic cell-T cell. The combined results implied

a cascade of intercellular signaling pathways where fibroblasts

activate dendritic cell inflammatory responsiveness. The latter

interacts with T cells to facilitate T cell trafficking, lymphoid tissue

organization, and type 2 cell recruitment (Figure 2A). Gene

regression networks allowed us to approximate and examine

intracellular systems, locate LR genes in the intracellular net-

works, and trace the upstream TFs that regulate the expression

of the LR genes. Figure 2B illustrates such an integrated intra-

and intercellular network centered around two significant inter-

actions: CCL19-CCR7 and CXCL12-CXCR4, as predicted by

scTenifoldXct. In dendritic cells, REL (proto-oncogene c-Rel,

an NF-kB subunit) was strongly regulated by CCR7, which is

consistent with the experimental results showing that CCR7 ac-

tivates NF-kB.39 NF-kB is also known to be co-activated with

AP1 and regulates CCR7 expression.40 JUN (the subunit of

AP1) is a TF positively regulates the expression of CCR7. Fig-

ure 2C depicts another integrated network centered around

ligands CCL17 and CCL22 and their receptors CCR6 and

CXCR4 in dendritic and T cells. We found that AP1 subunits,
Cell Systems 14, 1–10, April 19, 2023 3



Figure 2. Cell-cell interactions between fibroblasts, dendritic cells, and T cells with their intracellular networks in inflamed skin

(A) An illustration of representative interactions between cell types in skin lesions.27

(B) An integrated network across fibroblasts and dendritic cells with interactions: CCL19-CCR7, CXCL12-CXCR4, and CCL2-TNF (boldfaced in Table S1). Blue

and red edges indicate negative and positive regulatory relationships between genes, respectively. Genes like HES1 and JUNB are present in both cell types and

thus appear twice in the figure.

(C) An integrated network across dendritic cells and T cells with interactions: CCL17-CCR6, CCL22-CCR6, and CCL17-CXCR4 (boldfaced in Table S2).
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JUNB and JUN, are linked with these receptors, suggesting a

role of JUN/AP-1 proteins in skin inflammation.41 In conclusion,

these constructed networks were consistent with our prior

knowledge about gene regulatory relationships in the studied in-

flammatory skin system.

Comparison between scTenifoldXct and other existing
methods
We compared the prediction results of scTenifoldXct with those

produced by five existing methods, namely CellChat,11 Con-

nectome,12 iTALK,10 NATMI,8 and SingleCellSignalR.9 The

prediction of each method was generated from the same input

data, i.e., fibroblasts and dendritic cells in the inflammatory skin

dataset, and the same reference cell-cell interaction database,

Omnipath,1 was used. For each method, we implemented them

at their own optimal threshold and retained the equal number of

most significant LR pairs as reported (except that CellChat only

produced nine significant pairs) to perform an overlap analysis

using an upset plot (Figure S1). Five interactions (CCL2-CCR7,

CCL19-CCR7, CCL19-CXCR4, CXCL12-CCR7, and CXCL14-

CCR7) were detected by all six methods. Predictions made

by scTenifoldXct tended to overlap more with consensus in-

ferred by other methods. For example, scTenifoldXct detected

all interactions that CellChat detected. scTenifoldXct detected

six interactions missed by CellChat and Connectome, but the

other three methods detected them. scTenifoldXct detected

three additional interactions missed by CellChat but detected

by all other methods. CytoTalk,19 another method considering

intracellular networks, detected four significant LR pairs

(CCL19-CCR7, CCL26-CCR7, CCL2-VEGFA, and CCL26-

CXCR4), and all were detected by scTenifoldXct (Table S1).

Additionally, scTenifoldXct detected S100A8-ITGB2 and

CCL26-CCR6. All other methods failed to detect these two

LR pairs because this observation involved genes that were

lowly expressed (Figure S2), while the sensitivity of scTeni-
4 Cell Systems 14, 1–10, April 19, 2023
foldXct was augmented with the manifold alignment of intra-

cellular networks. There is mounting evidence that shows

that the two LR pairs are key factors involved in the pathogen-

esis of atopic dermatitis. S100A8 is an important molecule in

the pathogenesis and progression of atopic dermatitis via

altering cytokine and skin barrier protein expression levels.42

S100A8 is the first S100 family member that has a potent che-

mokine-like activity to murine phagocytes in vitro and in vivo.43

S100A8 and S100A9 induce neutrophil adhesion to fibrinogen

in vitro via upregulating Mac-1 (a heterodimer of CD11b and

ITGB2), indicating S100A8-ITGB2 is an important pathogenic

mechanism associated with the pathogenesis and the pro-

gression of atopic dermatitis. CCL26-CCR6 is another pair

of molecules uniquely detected by scTenifoldXct. The lesional

atopic dermatitis samples were characterized by the expan-

sion of inflammatory dendritic cells and tissue-resident

memory T cells.27 CCR6, a b-chemokine receptor, mediates

the migration of dendritic cells and several lymphocyte

subsets to sites of epithelial inflammation.44,45 It has also

been reported that CCR6 is required for IL-23-induced

psoriasis-like inflammation in mice.46 CCL26 is another mole-

cule that may serve an important role in the pathogenesis of

atopic dermatitis.47 The expression of CCL26 is known to be

increased in lesional atopic dermatitis fibroblasts,27 and the

serum CCL26 levels in patients with atopic dermatitis tend

to decrease after the treatment.47 These analyses demon-

strate that scTenifoldXct is capable of predicting both strong

and relatively weak interactions.

To further assess the performance of scTenifoldXct quantita-

tively, we used 40 LR pairs that were identified by all the five ex-

isting methods as ground truth and plotted the receiver oper-

ating characteristic (ROC) curve and precision-recall curve. We

found that scTenifoldXct achieved the greatest area under the

ROC curve (AUROC, 0.89) and the highest average precision

(AP, 0.87), respectively (Figure S3).



Figure 3. Joint similarity matrices used in

scTenifoldXct single- and two-sample ana-

lyses

(A) Joint similarity matrix for manifold alignment in

the single-sample analysis. WA and WB are the

gene regression networks of cell types A and B,

respectively. S is the crosstalk score matrix, and n

is the number of genes.

(B) Coupled joint similarity matrix for manifold

alignment in two-sample analysis. W1;A and W1;B

are the gene regression networks of cell types A

and B from sample 1,W2;A andW2;B from sample 2.

S1 and S2 are the crosstalk matrices for samples 1

and 2, respectively. bI is an identity matrix with a

tuning hyperparameter b.

ll
Methods

Please cite this article in press as: Yang et al., scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular
communication graphs, Cell Systems (2023), https://doi.org/10.1016/j.cels.2023.01.004
The scTenifoldXct framework for two-sample
application
The basic scTenifoldXct framework for single-sample applica-

tions can be extended to the comparison between two samples,

detecting LR pairs that show a significant difference in interac-

tion strength between samples such as healthy and diseased.

Similar to the basic framework in which manifold alignment is

achieved by solving a generalized eigenvalue problem with a

joint matrix (Figure 3A), the extended framework applies the neu-

ral networks as in the single sample to solve the manifold align-

ment problem in the two-sample. The difference is that the

coupled joint matrix is formed by including four gene regression

networks (from two cell types of two samples) and two crosstalk

score matrices (between two cell types from each sample)

(Figure 3B).

Step 1: Constructing joint similarity matrices for two

samples separately

We computed a joint matrix for each sample separately using

the procedure described in the single-sample applica-

tion above.

Step 2: Constructing a coupled joint similarity matrix

We then placed the two joint matrices in the diagonal block of the

coupled joint matrix V (Figure 3B). To make the low-dimensional

representations of two samples numerically comparable, a

constraint factor was included by setting bI to the off-diagonal

block of the joint similarity matrix, where I is an identity matrix

that reflects the binary correspondence between genes in

different samples and b is a tuning hyperparameter.

Step 3: Calculating the distance differences between

two samples

To determine significant differentially interacted LR pairs, we

calculated the Euclidean distance between every pairwise com-

bination of gene i in cell type A and gene j in cell type B for two

samples, respectively. The distance difference between each

gene pair was then computed across samples.

Step 4: Determining significantly differential LR-

mediated interactions

We considered gene pairs with a greater distance difference be-

tween two samples to be more significantly differentiated. With
this, we obtained a list of ranked gene

pairs. We computed p values for the

gene pairs using the chi-square test, ad-

justing the p values with a multiple testing
correction, and selected significant LR pairs using a 0.05 false

discovery rate (FDR) cutoff against the OmniPath database.1

Differential interaction analysis between normal and
tumor samples
The additional applications of scTenifoldXct include multi-sample

comparison. To demonstrate the performance of scTenifoldXct

comparative analysis, we obtained scRNA-seq dataset from a he-

patocellular carcinoma (HCC) study.48 The dataset contains cells

from the tumor and adjacent normal tissues, allowing for the com-

parison (Figure 4A). Using scTenifoldXct to compare tumor and

normal samples, we identified 11 interactions that showed signif-

icantly different strengths of hepatocyte-endothelial cell interac-

tions (Table 1). Among them, eight LR pairs interact more strongly

in tumor samples. For example, PLA2G2A (secretory calcium-

dependent phospholipase A2), previously implicated in host

antimicrobial defense, inflammatory response, and tissue regen-

eration,49–51 was found to interact more strongly with ITGA5 in

the tumor. GO enrichment analysis with genes in these eight

LR pairs enriched beta-1 integrin cell surface interactions

(Table S3), highlighting the role of beta-1 integrin in the progres-

sion of HCC.52 Figure 4B depicts an integrated network showing

four out of the eight tumor-enhanced pairs of LR-mediated inter-

actions: PLA2G2A-ITGA5, MDK-ITGA6, SPP1-ITGA5, and SPP1-

ITGB5. Corresponding intracellular networks of different cell types

were included. In this integrated network, TCF4 is linked with

ITGA5 and ITGA6 in the endothelial cells, indicating a functional

relationship between TCF4 and the two receptor genes. TCF4 is

a key component of the Wnt signaling pathway, which has been

linked to the proliferation of HCC cells. It could be an effective

therapeutic target for blocking the growth of hepatocellular tu-

mors.53 Specifically, the mutation of b-catenin (leading to its nu-

clear and cytoplasmic accumulation) renders it capable of by-

passing APC-targeted degradation and accumulating in the

nucleus to form a complex with TCF4 aberrantly activating down-

stream transcriptional events.54 Similarly, ERG is also linked with

ITGA5 and ITGA6 in endothelial cells. A previous study has found

more ERG-positive endothelial cells in HCC tissue than in

adjacent normal tissue.55 Fos proto-oncogene, AP-1 transcription
Cell Systems 14, 1–10, April 19, 2023 5



Figure 4. Cell-cell interactions between he-

patocytes (senders) and endothelial cells (re-

ceivers)

(A) An illustration of representative interactions in

hepatocellular carcinoma (HCC).48

(B) An integrated network across hepatocytes and

endothelial cells, connected by interactions

PLA2G2A-ITGA5, MDK-ITGA6, SPP1-ITGA5, and

SPP1-ITGB5 (boldfaced in Table 1). The top 30

weighted edges in each network of the cell type are

shown.

(C) Integrated networks connected through IGF2-

FGFR3 and IGF2-PDGFRB across hepatocytes

and endothelial cells in the adjacent normal (left)

and tumor (right) tissues.
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factor subunit (FOS) is linked with ITGA5 and ITGB5. FOS is an

oncogene upregulated in HCC.56 Figure 4C shows two identical

cellular networks of endothelial cells connected with hepatocytes

via LR-mediated interactions IGF2-FGFR3 and IGF2-PDGFRB. In

the tumor sample, the reduced intracellular regulation between

PDGFRB and ID1 and ID3 was evident. PDGFRB has been impli-

cated in the development andmetastasis of HCC, and ID1 and ID3

are associated with HCC dedifferentiation.57

Differential interaction analysis between WT and gene
KO samples
To test the generalizability of scTenifoldXct, especially when

applying it to the comparison of two samples, we performed

an additional two-sample comparison analysis. We obtained

scRNA-seq data derived from lung alveolar type II (AT2) cells

and basophils in a study utilizing wild-type (WT) and IL1RL1

(IL33R) knockout (KO) mice.58 It is known that AT2 cells produce

IL33 (ligand) that binds to IL1RL1 (receptor). In IL1RL1-deficient

lungs, basophils lack the expression of a large number of lung

basophil-specific genes.Wepredicted that scTenifoldXct-based

comparison analysis between theWT and KO samples should be

able to identify significant differential LR pairs. Indeed, IL33-

IL1RL1 ranked at the top of all LR pairs that were predicted by

scTenifoldXct to be significantly differentiated (Table S4). In

addition to IL33-IL1RL1, scTenifoldXct also identified six other

significant differentially interactive LR pairs, including CSF1-

TNF, CSF2-TNF, EDN1-EDNRB, and EDN3-EDNRB. CSF1 and

CSF2 are CSF family cytokines that have been shown to play

crucial roles in shaping the lung microenvironment.59–61 The

interaction strengths of CSF1-TNF and CSF2-TNF were all

significantly diminished in the KO sample. This is consistent

with the known functions of these genes and their interplay in

lung development.58,62 Similarly, the interaction strengths of

EDN1-EDNRB and EDN3-EDNRB were also diminished in the
6 Cell Systems 14, 1–10, April 19, 2023
KO sample, which is consistent with the

observed downregulation of EDNRB in

lung disease, where cells lose the ability

to respond to endothelin stimulation.63

DISCUSSION

We have showcased the functionality

and performance of scTenifoldXct. Using
real-data examples, we demonstrated single-sample and two-

sample applications of scTenifoldXct. A two-sample application

involves comparative analysis between two samples for which

none of the existing methods adopts the integrative strategy as

does scTenifoldXct. Methodologically, scTenifoldXct leverages

information on the topological placements of genes in gene

regression networks to explore intracellular connections of LR

pairs with other genes. Since the scTenifoldXct method takes

into account the networks underlying genes of LR pairs, it allows

for the reconstruction of a more detailed map of biological path-

ways linking the two cell types of interest. Incorporating intracel-

lular networks enables a comprehensive inference of signaling

pathways across cells. To the best of our knowledge, only a

few existing tools, such as NATMI and scMLnet,8,18 incorporate

intracellular network or signaling pathway information in their an-

alyses. The difference is that scTenifoldXct requires no prior

knowledge of intracellular networks, whereas other methods

depend on signaling pathways and networks in databases

such as Kyoto Encyclopedia of Genes and Genomes (KEGG).

scTenifoldXct computes gene regression networks from the

input data and operates entirely in a data-driven manner.

Furthermore, scTenifoldXct assigns scores to all combinations

of gene pairs without requiring prior knowledge of known LR

pairs. Thus, significant LR pairs detected by scTenifoldXct can

be those undocumented in the databases.

scTenifoldXct adopts the redesigned crosstalk score to quan-

tify the interaction strength between an LR pair. The product of

ligand and receptor expression has been widely adopted as an

indicator for this purpose, which is intuitively sound. When a

ligand and its receptor interact, they are expected to be highly

expressed, and the value of the product of their gene expression

should be greater. The redesigned interaction score we de-

signed for scTenifoldXct used the same principle, but we

expanded its formula by incorporating gene expression



Table 1. Differential interactions between hepatocytes and endothelial cells

LR pairs

LR distance on

manifold (tumor)

LR distance on

manifold (normal)

Difference in LR distances

between tumor and normal p value Adj. p value

PLA2G2A-ITGA5a 0.0010 0.0203 �0.0193 3.6E�7 8.0E�4

TFF3-ACKR3 0.0147 0.0330 �0.0183 1.5E�6 1.6E�3

IGF2-PDGFRB 0.0290 0.0108 0.0182 1.8E�6 1.7E�3

IGF2-FGFR3 0.0269 0.0105 0.0164 1.6E�5 6.1E�3

MDK-PTPRB 0.0041 0.0193 �0.0152 6.6E�5 1.5E�2

CXCL3-ACKR1 0.0078 0.0228 �0.0150 8.1E�5 1.8E�2

MDK-ITGA6a 0.0059 0.0206 �0.0147 1.1E�4 2.1E�2

SPP1-ITGA5a 0.0058 0.0203 �0.0145 1.3E�4 2.4E�2

IGF2-ERBB2 0.0275 0.0135 0.0140 2.1E�4 3.3E�2

SPP1-ITGB5a 0.0173 0.0312 �0.0139 2.4E�4 3.6E�2

SPP1-ITGA6 0.0068 0.0206 �0.0138 2.8E�4 3.9E�2

LR pairs were ranked according to the difference in distances from the ligand gene to the receptor gene on their aligned manifold in the latent space

between two cell types. The sign of difference indicates the direction of change in the interaction strength between the tumor and normal tissues. A

positive difference indicates a greater LR distance or decreased interaction strength in the tumor. By contrast, a negative difference indicates a smaller

LR distance or increased interaction strength in the tumor.
aLR pairs that appear in Figure 4B.
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variability. The latter has been shown to be equally weighted as

the average gene expression in reflecting cellular functions.64,65

Rather than focusing just on the expression mean, scTenifoldXct

considers gene expression variability across cells and calculates

the interaction score, balancing the contributions of the mean

and the variability. The effectiveness of this redesigned metric

has been demonstrated in our results, showing that biologically

significant LR pairs with low expression can be detected.

In terms of differential interaction analysis, although many

tools allow users to compare two samples,8–12 they initially infer

interactions for each sample independently before comparison.

The differences in obtained interaction scores are used to assess

the differences between the two samples. By contrast, the scTe-

nifoldXct comparative algorithm uses the integrated method to

learn the correspondences rather than processing two samples

independently. The level of differential interactions is measured

by the distance differences in the joint latent space of aligned

manifolds. Our manifold alignment algorithm automatically as-

sumes that datasets share the same underlying structure across

cell types. Such an assumption can be easily nullified by present-

ing cell type-specific cell states across heterogeneous single-

cell datasets. Thus, it remains computationally challenging for

manifold alignment algorithms to preserve both shared and da-

taset-specific cellular structures across samples.66 Despite this

concern, our common manifold-based integrative strategy has

been shown to be highly effective. For example, retrospectively,

we tried to apply the independent processing strategy to repeat

the comparative analysis, but this strategy did not work with

scTenifoldXct—i.e., no LR pairs were detected under the inde-

pendent processing.

For further development, because temporally and spatially

precise cell communication is the key to cellular differentiation,

we consider the next version of scTenifoldXct could be directed

toward incorporating time series and spatial transcriptomic in-

formation. For time series scRNA-seq data, existing analytical

frameworks such as GraphFP and SoptSC67,68 have demon-

strated the feasibility of simultaneous inference of cell lineages
and cell-cell communications. Recent improvements in pseudo-

temporal ordering enable us to map the underlying regulatory

networks over time.69,70 Thus, the scTenifoldXct framework

can be further updated by taking time series or pseudotime infor-

mation and integrating dynamic inference modules, enabling the

assessment of changes in interaction strength throughout the

processes of cellular differentiation or organ development.
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OmniPath Turei et al.1 v1.0.4

Seurat (R package) https://cran.r-project.org/web/

packages/Seurat

v4.0.2

Ray Tune (Python package) https://www.ray.io/ray-tune v1.8.0

Pytorch (Python package) https://pytorch.org v1.9.0

igraph (Python package) https://igraph.org v0.9.6

LIANA (R package) Dimitrov et al.21 v0.0.5

UpSetR (R package) https://cran.r-project.org/web/

packages/UpSetR

v1.4.0

CytoTalk (R package) Hu et al.19 v0.99.0
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, James J.

Cai (jcai@tamu.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table. Known LR pairs (n = 8,047) were retrieved from OmniPath (v1.0.4),1 a knowledge database of intracellular and intercel-

lular signaling pathways. TF gene names (n = 1,564) were downloaded from the Human TFome database.2

d All original code has been deposited at GitHub (https://github.com/cailab-tamu/scTenifoldXct) and is publicly available as of

the date of publication. This repository has been archived at Zenodo (https://doi.org/10.5281/zenodo.7453377).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data preprocessing
The input of scTenifoldXct is a gene-by-cell count matrix with annotated cell types. In addition, sample information is required for the

comparative analysis. For all scRNA-seq data sets, we performed log-normalization using the NormalizeData function in Seurat

(v4.0.2).71 Highly variable genes were selected using the FindVariableFeatures function in Seurat (selection.method = ‘‘vst’’). For

each gene, Seurat computed the standardized variance of its expression across cells, controlling for the mean expression.71 For

each data set, the top 3,000 highly variable genes were included in subsequent analyses. Cell annotations from original studies

were retained and used.
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Network construction
Given cell types A and B, we employed PC regression to construct the intracellular gene regression networks, denoting them asWA

andWB. Specifically, suppose X ˛Rn3p is the count matrix with n genes and p cells for cell type A. The gene expression level of the ith

gene in all p cells is represented by the ith row of X, denoted by Xi ˛Rp. Denote X� i ˛Rðn� 1Þ3p as the matrix by deleting Xi from X. To

estimate the effects of other n � 1 genes on the ith gene, we constructed the PC regression model for Xi. First, we applied principal

component analysis (PCA) to XT
� i and selected the firstM leading PCs to construct Zi = ðZi

1;/;Zi
MÞ˛Rp3M, where Zi

m ˛ Rp is themth

PC of XT
� i;m = 1;2;.;M and M � min ðn;pÞ. Because PC regression only uses M PCs as covariates, it reduces the risk of over-

fitting and computation time. Denote Vi ˛Rðn� 1Þ3M as the PC loading matrix for the first M leading PCs, then Zi = XT
� iV

i where Vi

satisfies ðViÞTVi = IM. The next step was to generate the regression coefficients by regressing Xi on Zi and solve the following opti-

mization problem:

bb i
= arg minbi ˛RMkXi � Zibik22;

which can be easily solved by the ordinary least square (OLS) method. Then, the effects of the other n � 1 genes to the ith gene were

obtained by ba i = Vibb i
˛Rn� 1. Repeating this process for another n � 1 times, with one different gene as the response gene each

time, we assembled fba igni = 1 together and constructed an n3n weighted adjacency matrix W of the intracellular gene regression

network. The ith row of W is ba i, and all diagonal entries of W are all 0. Eventually, the gene regression network WA for cell type A

and gene regression network WB for cell type B were obtained. WA and WB could be symmetrized when necessary.

Crosstalk score
The product of the mean expression of known ligands and receptors has been widely used in most computational approaches to

gauge cellular interactions. To account for the gene variance within cell groups, we additionally incorporated gene expression var-

iances in the definition of the crosstalk score between gene i in cell A and gene j in cell B, as shown below:

scoreiA;jB =
�ð1 � lÞu2

iA + ls2
iA

�
3
h
ð1 � lÞu2

jB + ls2
iB

i
;

where uiA; s
2
iA and ujB;s

2
iB are the expression mean and variance of gene i in cell A and gene j in cell B, respectively. The hyperpara-

meter l scales the relative contribution of mean and variance. By default, l = 1=2, and the crosstalk score could be treated as the

product of half of the second moment between gene i in cell A and gene j in cell B.

Manifold alignment
Manifold alignment is a nonlinear feature projection method by which we embed the genes of sender and receiver cells into a unified

space while simultaneously minimizing the distance between corresponding genes and preserving the original structure of gene

regression networks of each cell type. Manifold alignment allows the low dimensional projections of genes to be comparable and

preserves the information of gene regression networks. To summarize the strength of interactions for each pair of genes across

the cell types, we defined the crosstalk score matrix S with Si;j = m scoreiA;jB, where m is a scale factor indicating how much we

want to preserve the weight of intercellular correspondences relative to the edge weight of gene regression networks. Following

Vu et al.,25 we set m =

P
i;j

ðWAÞij +
P
i;j

ðWBÞij

2
P
i;j

scoreiA;jB
. In this way we ensured the correspondence and gene regression networks are in a compa-

rable scale so that the manifold alignment result is not biased toward either metric. We found that the above value setting of m gener-

ated a more robust and unbiased detecting result than other scaling settings, including m = 1 (unscaled), 0:1m, and 10m (Figure S4B).

The joint similarity matrix is then constructed as follows:

W =

�
WA S
ST WB

�
:

Note that S is asymmetric, while, whenWA andWB are symmetric,W is symmetric.WA andWB may contain negative values when

gene expressions are negatively correlated, and in such cases, the properties of the corresponding Laplacian are not well under-

stood.25 We resolved this problem by adding 1 to all entries of WA and WB, transforming the range of WA and WB from [-1, 1] to

[0, 2]. As a result, the projected features of two genes with a positive correlation would be closer than those with a negative corre-

lation. For convenience, we still usedWA andWB to denote the transformed gene regression networks of the two cell types. The loss

function for this manifold alignment is

[ ðHÞ =
X
i;j

kHi � Hjk2Wij =
X
i;j

kHA
i � HA

j k
2
WA

ij +
X
i;j

kHB
i � HB

j k
2
WB

ij + 2
X
i;j

kHA
i � HB

j k
2
Sij;
e2 Cell Systems 14, 1–10.e1–e4, April 19, 2023
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whereH =

�
HA

HB

�
˛R2n3d is the low-dimensional representation for cell typeA and cell typeB, and d ð � nÞ is the dimension of the

latent space. Moreover, we needed an additional constraint

HTDH = Id

for this loss function to work properly, i.e., to avoid the trivial solution of mapping all instances to zero, whereD is a diagonal matrix

withDii =
P
j

Wij and Id is a d3d identity matrix. Solutions for manifold alignment traditionally rely on the eigen decomposition, which is

computationally demanding. To speed up, neural networks were used to learn the unified low-dimensional latent representationH.24

Let H =

�
HA

HB

�
=

"
HA

�
,; qA

�
HB

�
,; qB

� #
, where qA and qB are parameters for two neural networks. By minimizing the loss function [ðH; qA;

qBÞ, we obtained parameters bqA and bqB. To guarantee that our solution bH = Hð,; bqA; bqBÞ satisfies the constrain bHT
D bH = Id, we fol-

lowed the optimization method described in Nguyen et al.,24 forcing the outputs of the optimization problem on the Stiefel mani-

folds.72 This nonlinear method yielded the low-dimensional representation bH, which reveals the information on both intra- and in-

ter-cellular networks.

Neural networks have an input layer consisting of nodes of samples (cells) and two hidden layers (by default 32/16 hidden units)

along with sigmoid nonlinearity, followed by a linear output layer (3 units). All the layers are fully connected. Hyperparameters such as

the number of iterations and learning rate were optimized to ensure the functionality and reproducibility of the networks for single-

and two-sample analyses. For each data set, we performed a random hyperparameters search of 100 trials by the module Ray Tune

(v1.8.0)73 with the hidden neurons randomly selected from 64 and 32, the embedding dimension sampled from 2 to 10, and the

learning rate sampled from a uniform distribution from 10-5 to 0.1 in log space. Figure S4A shows some experimental runs including

the optimal output for each data set. To implement, we initialized two neural networks with uniformweights following PyTorch (v1.9.0)

recommended heuristic for linear layers and trained them from scratch. For the inflammatory skin data set of single-sample analysis,

we trained the model for 1,000 iterations using the Adam optimizer with a learning rate of 0.01.

Determining the statistical significance of interactions between cell types in a single sample
With bHA = HAð,; bqAÞ and bHB = HBð,; bqBÞ˛Rn3dbeing the representations of genes from cell types A and B in the low dimensional

embedding, respectively, we calculated the Euclidean distance dij across cell types for every pairwise combination of gene i in cell A

and gene j in cellB and denoted the square difference of projected representations between gene i and gene j as d2
ij = k bHA

i � bHB

j k
2

.

We implemented a nonparametric test to identify significant gene pairs among all combinations under the null hypothesis that there is

no LR-mediated interaction between gene pairs. The null hypothesis distribution was obtained by collecting d2
ij of all gene pairs,

excluding LR pairs in the OmniPath database. Compared to gene pairs that appear in the database, those gene pairs absent in

the database were considered much less likely to be gene pairs that confer LR-mediated interactions. Alternatively, the null distribu-

tion could be constructed by random shuffling of the data, which would make the test less conservative. Next, we calculated the

quantiles for LR pairs under the null hypothesis distribution and set them as the original p-values. The threshold was set to 0.05

for all data sets. We excluded the Chi-square test in this case because the left tail targeting for close gene pairs with short distances

is desired and is therefore incompatible with the Chi-square test.

Comparative manifold alignment
Comparative biology to study the function of gene sets looks for significant differential interactions between two samples, such as

healthy (H) and diseased (D). One direct method is to walk through the above pipeline for two samples separately and obtain the dif-

ference dH
ij and dD

ij for different samples. Given that dH
ij and dD

ij were not comparable since the low-dimensional representations for

two samples belonged to different latent spaces, wewere asked to add constraints tomake them numerically comparable so that the

same genes from two samples would have similar low-dimensional representations. Following the general manifold alignment frame-

work,26 we constructed the coupled joint similarity matrix across two samples denoted by V as

V =

�
WH bI
bI WD

�
;

whereWH andWD are the joint similarity matrices constructed by the above manifold alignment method for each sample, respec-

tively. I is an 2n32n identical matrix, and b is a tuning hyperparameter, which is by default 0.9 times themean value of the row sums of

WH and WD. Intuitively, a smaller factor b would not enforce correspondence between identical genes from different samples,

whereas a larger one would produce close distances between identical genes without much consideration of the given gene regres-

sion networks. We showed that within an optimal range of the scale factor in b, the aligned distances remained highly correlated (Fig-

ure S4C). The loss function is defined as

[ ðFÞ =
X
i;j

kFði; Þ � Fðj; Þk2Vði; jÞ:
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The solution is denoted as b5 = b5H
D ˛R4n3d where b5H and b5D ˛R2n3d are analogy to bH in single-sample analysis, which are the
�
b5

�
vertically stacked representations of genes from cell types A and B in each sample. In the two-sample analysis setting, four neural

networks are initiated for solving the optimization problem described previously, the architecture of which are identical with ones

used for the single-sample analysis. We performed a random search again for the learning rate. We trained the model for up to

3,000 iterations using the Adam optimizer with the same learning rate of 0.01 as in the single-sample analysis (Figure S4A).

Determining LR pair statistical significance of differential interactions between two samples
From b5H and b5D, we calculated the Euclidean distances dH

ij and dD
ij for every pairwise combination of gene i in cellA and gene j in cellB

in samples H and D, respectively, similar to the single sample scenario. We then computed the squared distance difference of each

gene pair across samples as Dd2
ij = kdH

ij � dD
ij k

2
. Note that this test statistic would be higher for gene pairs that exhibit a significant

difference between two samples. Thus, gene pairs with larger Dd2
ij are considered more differentiated. To determine the significance,

we implemented the Chi-square test since our test statistic was demonstrated in the sum of square form. Here we set df = 1 tomake

a conservative selection of gene pairs with high precision. By using the right tail PðX > xÞ of the Chi-square distribution, we assigned

p-values for each gene pair. Finally, we implemented FDR to generate the adjusted p-values and selected significant gene pairs with

adjusted p-value < 0.05.

Validate the predicted interactions between LR pairs
After the Chi-square test, significant LR interactions were queried against the OmniPath database.1 The predicted LR pairs in the

database were retained for subsequent functional enrichment analyses performed by Enrichr.74

Visualization of integrated networks
Python package igraph (v0.9.6) was used to generate network plots. In each of the network plots, only direct connections between

TFs and the enriched LR pair of interest were shown, and the LR interaction itself was highlighted in green. The edge thickness was

adjusted to be proportional to the absolute value of the coefficient between gene pairs in the intracellular networks. Positive and

negative coefficients were indicated in red and blue, respectively.

Systematic comparisons between scTenifoldXct and existing tools
Wecompared scTenifoldXct with NATMI,8 SingleCellSignalR,9 Connectome,12 iTALK,10 andCellChat.11 The test datawas the inflam-

matory skin scRNA-seq data set. Two cell types were fibroblasts and dendritic cells. For all the methods, the reference LR database

was OmniPath.1 The comparison analysis was facilitated by using LIANA (v0.0.5).21 To show the overlap between significant results,

the upset plot was generated using UpSetR (v1.4.0).75 Equal numbers of pairs ranked by each method’s default scoring metric were

retained. CytoTalk (v0.99.0)19 was executed independently for reporting significant signaling pathways, and LR pairs from those

pathways were subsequently used for the comparison. For plotting the ROC and precision-recall curves, a total of 160 LR pairs,

for which both ligand and receptor genes were expressed in the two cell types, were included in the evaluation. Among them, 40

consensus pairs detected by all five methods except scTenifoldXct were used as positive pairs. The remaining 120 were used as

negative pairs. The computation cost of scTenifoldXct was estimated on the public platform Google Colaboratory,76 and the results

are available in Table S5.
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